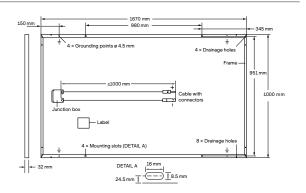


THE IDEAL SOLUTION FOR:



Rooftop arrays on residential buildings

Rooftop arrays on commercial/industrial buildings

ELECTRICAL CHARACTERISTICS

PO	WER CLASS			300	305	310	315	320
MIN	IIMUM PERFORMANCE AT STANDARD	TEST CONDITIO	NS, STC1 (PC	OWER TOLERANCE	+5W/-0W)			
Minimum	Power at MPP¹	P _{MPP}	[W]	300	305	310	315	320
	Short Circuit Current ¹	I _{sc}	[A]	9.77	9.84	9.91	9.98	10.05
	Open Circuit Voltage ¹	V _{oc}	[V]	39.76	40.05	40.33	40.62	40.90
	Current at MPP	I _{MPP}	[A]	9.26	9.35	9.44	9.53	9.63
	Voltage at MPP	V _{MPP}	[V]	32.41	32.62	32.83	33.04	33.24
	Efficiency ¹	η	[%]	≥18.0	≥18.3	≥18.6	≥18.9	≥19.2
MIN	IIMUM PERFORMANCE AT NORMAL O	PERATING CONI	DITIONS, NN	IOT ²				
	Power at MPP	P _{MPP}	[W]	224.3	228.0	231.8	235.5	239.2
E	Short Circuit Current	I _{sc}	[A]	7.87	7.93	7.99	8.04	8.10
ij	Open Circuit Voltage	V _{oc}	[V]	37.48	37.76	38.03	38.30	38.57
Ξ	Current at MPP	I _{MPP}	[A]	7.28	7.35	7.43	7.51	7.59
	Voltage at MPP	V _{MPP}	[V]	30.82	31.00	31.18	31.36	31.53

 $^{1}\text{Measurement tolerances P}_{\text{MPP}} \pm 3\%; I_{\text{SC}}, V_{\text{OC}} \pm 5\% \text{ at STC}; 1000 \text{W/m}^{2}, 25 \pm 2\text{°C}, \text{AM } 1.5\text{G} \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{NMOT}, \text{spectrum AM } 1.5\text{G} \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{NMOT}, \text{spectrum AM } 1.5\text{G} \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{NMOT}, \text{spectrum AM } 1.5\text{G} \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{NMOT}, \text{spectrum AM } 1.5\text{G} \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{NMOT}, \text{spectrum AM } 1.5\text{G} \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{NMOT}, \text{spectrum AM } 1.5\text{G} \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{NMOT}, \text{spectrum AM } 1.5\text{G} \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{NMOT}, \text{spectrum AM } 1.5\text{G} \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{NMOT}, \text{spectrum AM } 1.5\text{G} \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{NMOT}, \text{spectrum AM } 1.5\text{G} \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{NMOT}, \text{spectrum AM } 1.5\text{G} \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{NMOT}, \text{spectrum AM } 1.5\text{G} \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{NMOT}, \text{spectrum AM } 1.5\text{G} \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{MOT}, \text{spectrum AM } 1.5\text{G} \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{MOT}, \text{spectrum AM } 1.5\text{G} \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{MOT}, \text{spectrum AM } 1.5\text{G} \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{MOT}, \text{spectrum AM } 1.5\text{G} \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{MOT}, \text{spectrum AM } 1.5\text{G} \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{MOT}, \text{spectrum AM } 1.5\text{G} \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{MOT}, \text{spectrum AM } 1.5\text{G} \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{MOT}, \text{spectrum AM } 1.5\text{G} \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{MOT}, \text{spectrum AM } 1.5\text{G} \text{ accord$

Q CELLS PERFORMANCE WARRANTY

DO TO THE PROPERTY OF THE PROP

At least 98% of nominal power during first year. Thereafter max. 0.6% degradation per year. At least 92.6% of nominal power up to 10 years. At least 83.6% of nominal power up to 25 years.

All data within measurement tolerances. Full warranties in accordance with the warranty terms of the Q CELLS sales organisation of your respective country.

PERFORMANCE AT LOW IRRADIANCE

Typical module performance under low irradiance conditions in comparison to STC conditions (25 $^{\circ}\text{C}, 1000\,\text{W/m}^2\text{)}.$

TEMPERATURE COEFFICIENTS								
Temperature Coefficient of I _{SC}	α	[%/K]	+0.04	Temperature Coefficient of V _{oc}	β	[%/K]	-0.27	
Temperature Coefficient of P _{MPP}	γ	[%/K]	-0.38	Normal Module Operating Temperature	NMOT	[°C]	43±3	

PROPERTIES FOR SYSTEM DESIGN

Maximum System Voltage	V_{SYS}	[V]	1000	Safety Class	II
Maximum Reverse Current	I _R	[A]	20	Fire Rating	С
Max. Design Load, Push / Pull		[Pa]	3600/2667	Permitted Module Temperature	-40°C - +85°C
Max. Test Load, Push / Pull		[Pa]	5400/4000	on Continuous Duty	

QUALIFICATIONS AND CERTIFICATES

PACKAGING INFORMATION

VDE Quality Tested, IEC 61215:2016; IEC 61730:2016, Application Class II; This data sheet complies with DIN EN 50380.

Number of Modules per Pallet	32
Number of Pallets per Trailer (24t)	30
Number of Pallets per 40' HC-Container (26t)	26
Pallet Dimensions (L × W × H)	1745 × 1150 × 1170 mm
Pallet Weight	651 ka

Note: Installation instructions must be followed. See the installation and operating manual or contact our technical service department for further information on approved installation and use of this product.

Made in Korea

Hanwha Q CELLS Australia Pty Ltd

Suite 1, Level 1, 15 Blue Street, Sydney, NSW 2060, Australia | TEL +61 (0)2 9016 3033 | FAX +61 (0)2 9016 3032 | EMAIL q-cells-australia@q-cells.com | WEB www.q-cells.com/australia | TeL +61 (0)2 9016 3033 | FAX +61 (0)2 9016 3032 | EMAIL q-cells-australia@q-cells.com | WEB www.q-cells.com/australia | TeL +61 (0)2 9016 3033 | TeX +61 (0)2 9016 3032 | TeX +61 (0)2 901

